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This theoretical study describes how three-dimensional nonlinear distortion may 
soon take effect, following a small initial input disturbance that is nearly planar, in 
an otherwise two-dimensional boundary layer at  high Reynolds number. The 
mechanism involved is a form of vortex-wave interaction, the first such to be 
examined in the so-called high-frequency range. The interaction is powerful, in that 
three-dimensional disturbances of relatively low amplitude (the wave part) interact 
nonlinearly with the three-dimensional corrections to the mean flow (the vortex part) 
at a stage where the purely two-dimensional case alone would still be linear. A 
coupled nonlinear partial-differential system is derived, governing the vortex and 
wave parts. Computations and analysis of the system are then presented. These point 
to a finite-time singularity arising in the solution, involving blow-up of both the 
vortex and the wave amplitudes (but particularly the former), accompanied by 
spanwise focusing into streets. This is believed to be the first nonlinear interaction in 
the high-frequency range to produce a finite-time (or-distance) blow-up. The blow- 
up is such that the local flow soon enters a strongly nonlinear three-dimensional stage 
in which the total mean flow is altered. The implications of this blow-up and focusing 
for one of the classic paths of boundary-layer transition are also discussed, and here 
quantitative and/or order-of-magnitude comparisons suggest that the theory is in 
line with the findings of Klebanoff & Tidstrom (1959) and later experiments. 

1. Introduction 
One of the classic types of boundary-layer transition to turbulence seen and 

measured experimentally (in studies stretching from Schubauer & Skramstad 1947 ; 
Klebanoff & Tidstrom 1959; and references in Stuart 1963 (e.g. see his figures 
IX.26-IX.28) to the works referenced in Kleiser & Zang 1991 ; Hall & Smith 1991) 
consists of the downstream progression from initially near-planar linear Tollmien- 
Schlichting (TS) disturbances to three-dimensional nonlinear disturbances and 
onward to full turbulence, possibly via the production of turbulent spots. This 
forms perhaps the most well-known path through transition, and it has also been 
simulated numerically in a number of computations (e.g. see references in Kleiser & 
Zang 1991). It provides the motivation for the present theoretical study. Here our 
attention is on nonlinear interactions between TS waves and their induced vortex 
motion, interactions which are three-dimensional of necessity and can take place a t  
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surprisingly low wave amplitudes as we see below. The particular type of transition 
that arises in practice, as well as in theory, depends on the amplitudes, wavenumbers 
and frequencies of the input disturbance upstream, and on the general disturbance 
environment, and there are indeed many types and paths, including the by-pass 
type. The specific concern here is in inputs that are relatively small and almost two- 
dimensional initially. The main applications in mind are to aerodynamic and to 
atmospheric boundary layers although there are a number of other related 
applications. 

Of special interest on the theoretical side is the so-called high-frequency range 
(Smith & Burggraf 1985; Smith & Stewart 1987; Stewart & Smith 1987), based on 
the triple-deck account of how nonlinearity can first affect two- or three-dimensional 
TS disturbances near the lower branch of the neutral curve (Smith 1979a, b) .  This 
range extends in fact towards the upper branch (see references above, and the 
extensions in Smith, Doorly & Rothmayer 1990) and it is a very interesting range 
experimentally as well as theoretically. For instance, Smith & Stewart (1987), 
following Craik (1971), show that the high-frequency range provides an explanation 
of the resonant-triad nonlinear interaction, including very good agreement with the 
experiments of Hachanov & Levchenko (1984). Again, there is good agreement 
between the theory of Stewart & Smith (1987) and the experiments of Kachanov 
(1988) concerning the instability of separating flow, while the recent paper by 
Kachanov, Ryzhov & Smith (1992) indicates very close alignment of the nonlinear 
two-dimensional theory (see Smith & Burggraf 1985; Zhuk & Ryzhov 1982) and the 
experiments of Kaohanov and co-workers (Borodulin & Kachanov 1988 ; Kachanov 
1988). Our interest however is in the case of nearly two-dimensional input, and how 
it may succumb nonlinearly to three-dimensional distortion, as distinct from both 
the strictly two-dimensional input of Smith & Burggraf (1985) and the rather specific 
three-dimensional input of Smith & Stewart (1987), Craik (1971). In  particular, we 
are concerned with the effects of vortex-wave interaction (VWI) in the high- 
frequency range, for an otherwise two-dimensional incompressible boundary layer. 

The VWI considered below starts its life as a weakly nonlinear interaction as 
described later. The wave part of the VWI has amplitudes that are much less than 
those in the alternative, purely planar, development (Smith & Burggraf 1985 ; Smith 
1985, 1986a) but happen to be comparable with those in the resonant-triad 
interaction of Smith & Stewart (1987), which forms another alternative path. In the 
current work, a substantial part of which was done during the period 1987-89, it is 
the response of the vortex part or mean-flow correction of the VWI that is crucial, 
as found in other work (e.g. Hall & Smith 1988, 1989, 1990, 1991 ; Smith & Walton 
1989; Bassom & Hall 1990; Smith & Blennerhassett 1992; Walton & Smith 1992; 
Smith 1992). The vortex velocity induced in the streamwise direction is notably large 
due to the inertial action of wave-amplitude-squared effects on the relatively small 
spanwise momentum of the vortex, combined with the relatively slow temporal- 
spatial evolution of the vortex flow; see $2 below. The second harmonics, in 
contrast, play no significant part in the VWI and neither does the induced critical 
layer in this regime as the critical layer is nonlinear and passive. It is interesting that 
the current VWI appears to be the first one studied in the high-frequency range. In 
fact, it connects the three strongly nonlinear transition theories listed by Hall & 
Smith (1991), namely pressuredisplacement interaction theory (Smith 1979a, b, 
1988; Peridier, Smith & Walker 1991a, b ;  Hoyle, Smith & Walker 1991; Smith & 
Bowles 1992), Euler-scale theory (Smith & Burggraf 1985; Smith et al. 1990), and 
vortex-wave interaction theory (see references earlier in this paragraph). In  any 
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case, the VWI here is controlled by a nonlinear coupled partial-differential system 
linking the temporal-spatial development of the vortex and wave parts, as $2 shows. 
Computational and analytical properties are presented in $$3,4 ,  the most significant 
property being that the VWI solution develops a singularity within a finite scaled 
time. Further comments and repercussions, together with quantitative comparisons 
between the theory and experiments, are given in $5.1-5.3. 

This is the first weakly nonlinear interaction found (in the high-frequency range) 
to provoke a blow-up within a finite time, as far as we can tell. In that sense, it 
represents the most powerful nonlinear effect found, so far anyway. Moreover, the 
blow-up occurs before purely two-dimensional nonlinearity would have come into 
the reckoning (see also further comments in $5.1) .  

An equally significant feature is that the nature of the blow-up implies that a 
strongly nonlinear stage is soon encountered next (see $ 5.2), accompanied by 
spanwise focusing into streets; this feature among others is found to agree with the 
experimental findings of Klebanoff & Tidstrom (1959) as summarized in Stuart’s 
(1963) figures IX.2GIX.28  (see $5.3) and later experiments (e.g. Klebanoff, Tidstrom 
& Sargent 1962, Kovasznay, Komoda & Vasudeva 1962; Hama & Nutant 1963; 
Nishioka, Asai & Iida 1979). Thus the present VWI provides a means for small 
almost two-dimensional input to reach large three-dimensional status relatively fast 
and alter the total mean flow. This is described in detail in $5.2, along with several 
other issues that arise ($5 .1) ,  followed by the comparisons in $5.3. 

The present setting, then, starts with the incompressible triple-deck scales (see also 
below), in which 

( 1  . l a ,  b )  

( 1  . I  C, d )  

in the lower deck. Here ( 1 . 1  a )  gives the velocity vector in the Cartesian coordinates 
of ( 1 . 1  c )  (streamwise, normal, spanwise respectively), p ,  is the pressure, and t ,  is the 
time, while the subscript D denotes dimensional variables and 00 denotes local free- 
stream values, near the position (X,~,Z,~) of concern. The fluid density pD and 
the lengthscale 1 ,  (e.g. the airfoil chord) are constants and the Reynolds number 
Re = uDm lD/vD is large, with v, being the kinematic viscosity of the fluid. The usual 
skin-friction factor h is normalized to unity, without loss of generality, and the wall is 
given by y = 0.  Under ( 1 . 1  a-d) ,  the Navier-Stokes equations reduce to the unsteady 
nonlinear interactive boundary-layer equations (2.1 u-c) below, subject to boundary 
conditions (in (2.1d-f)) which, among other things, match the solutions in the three 
decks of the triple-deck structure. The system (2.1 a-f) supports linear and nonlinear 
two- and three-dimensional TS waves and VWI’s, apart from the high-frequency 
range, and the system also produces predictions in good agreement with experiments 
or direct numerical simulations in certain cases. Hence we start with that system, 
although in fact the high-frequency range adopted subsequently applies for a wide 
range of scales beyond those given in ( l . l a - d ) ,  as earlier papers have noted. The 
current VWI raises some interesting questions about the interplay with other 
interactions such as resonant triads, and it may yield insight into new VWI 
structures near the linear upper branch, e.g. concerning the crossover from TS to 
Rayleigh-like nonlinear interactions. 

[u,, v,, wD]/uDm = [Re%, Re&, Redw] ,  @, - p D m ) / p D  ubm = Redp,  
[zD-xDo, y,,, z D - z D o ] / l ,  = [Re%, Re-iy, Re-tz], t D  UDm/lD = Redt 
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2. Flow structure, and derivation of the VWI 
Given the arguments presented in $1 ,  we work in terms of the three-dimensional 

triple-deck problem, requiring a solution of the unsteady nonlinear three-dimensional 
interactive boundary-layer equations 

(2 . la)  

(2.lb) 

(2.lc) 

with applay zero and the pressure p ( x ,  z ,  t )  being unknown. These are subject to the 
main boundary conditions 

u=v=w=O at y = O ,  (2.ld) 
u - y + A ( z , z , t ) ,  w+O as y + m ,  (2.1 e) 

from the no-slip condition at  the fixed surface, from the matching involving the 
unknown displacement function - A ,  and from the interaction with the external 
flow, respectively. This last condition can also be expressed in the form of solving 
Laplace's equation for the pressure just outside the boundary layer, 

(a;+a;+a,z)p = 0, (2.19) 

with (2.lh) 

and with suitably bounded far-field conditions, as an alternative to (2.1 f). 
Our concern then is with the range of relatively high frequencies, or fast travelling 

nonlinear disturbances, similar to that in Smith & Burggraf (1958), Smith (1985, 
1986a, b) ,  Smith & Stewart (1987), Stewart & Smith (1987). Thus now 

a a a l a  a a  a 
- -+ - + - + . . . , - + 522- + 52-3 - + . . . , - -+ - + 51-1 - + . . . , 
at aT, a% ax ax, ax2 a2  az, a 2 3  

(2.2 a-c) 

with the effective frequency parameter 52 being large. Here t = W ' T ,  = T2 = ..., 
x = Pix, = QiX,  = . . . , z = 2, = . . . define the multiple variables present, and the 
main difference from the works mentioned just above is the particular form of the 
multiple-scales dependence in (2.2 a-c), especially the relatively slow spanwise 
variation, and the three-dimensional expansions set out below. The pressure and 
displacement fields for the current context of VWI's are given by the expansions 

p = (P,E+Po*E-')+52-1Pz+O(Q-f), ( 2 . 3 ~ )  

A = 52-1 (A ,  E + A,* E-l+ AOM) + 52-f A + . . . (2.3b) 

(* or C.C. denotes the complex conjugate) where the dominant wave-like dependence 
is two-dimensional, such that 

E = exp [i(a,X,-T,)], (2.4) 
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FIQURE 1. Sketch of the V W I  flow strycture for near-planar input, showing the lower-deck regions 
I-IV and the main part of the O(Re-i) boundary layer, within the high-frequency range, in non- 
dimensional terms. The diagram is not to scale, and the outer potential-flow zone or upper deck is 
not shown. This structure should be compared with that in figure 5 below. 

while the velocity field subdivides into four distinct regions (I-IV) in the normal 
direction, as described below; see also figure 1. In (2.3a, b), (Po,Ao,AoM) (X2,Z1, T,) 
are unknown, as are P2,A, which are given in more detail subsequently. 

The major region (I) is an inviscid one in which y is large, y = with typically 
of order unity, and the velocity components expand in the form 

u = &j+sz- wo+n-~u,+ ..., 2) = Intv,+sztv,+..., w = 52-1W,+G!-aW,+ ...) 
(2.5 a-C) 

where we observe the relative weakness of the spanwise velocity. Substitution of 
(2.5a-c), along with (2.3a), into the controlling equations (2.1 a-c) therefore yields 
in turn the following sets of successive equations: 

avo *avo -+ y-+ V, = -(ia,EP,+c.c.), a% axo for s-momentum 

(2.6a, b)  

( 2 . 7 ~ )  
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for z-momentum 
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( 2 . 8 ~ )  -+y-- - aw, .awl- 
a% ax, 

- ( E-+c.c. 2 ) -- az, (2.8b) 

in turn. 
The solutions relevant here have the form 

U, = EU,,+ C.C. + U O M ,  U2 = E2U,2 + EU2, + C.C. + U Z M ,  (2.9a, b )  

W, = EW1,+c.c.+Wl,, ( 2 . 9 ~ )  

with any E-dependence being shown explicitly, and likewise for the v-components 
except that  V,, is zero. In  (2.9) it  is noteworthy that the mean-flow correction terms, 
i.e. the mean vortex components, are comparable with the fundamentals, in both the 
streamwise and the spanwise velocities. From ( 2 . 6 ~ )  ff. and from the constraints in 
(2.1d-f) (see also Appendix A), we obtain 

U,, = a,Po, V,, = -ia;ijP,, A ,  =Po,  a, = 1, (2.10 a d )  

Wll = i($- l)-l aP,/aZ,, (2.10e) 

for the main fundamentals (cc E), while from the higher-order balances the mean- 
flow corrections (cc EO) are governed by 

(2.1 1 c) 

from (2.6b), (2.7b),  (2.8b), and the induced extra fundamentals of interest here 
satisfy 

( 2 . 1 2 ~ )  

(2.12 b)  

from (2.6b), (2.7b), whereas the fundamental's contributions in (2.8b) serve only to 
control W,,. A key term in the mean-flow balances is the last one on the left-hand side 
of (2.11c), which stems from the nonlinear forcing contributions in (2.8b), with the 
solutions (2.10~-e) inserted. This term, due to the spanwise variation of the wave 
amplitude, drives the mean-w field WIM in (2.11 c) which then forces the mean-flow 
contributions UOM, V,, via the continuity and streamwise-momentum balances 
(2.11a, b) .  Likewise, the mean-flow corrections then act to drive the extra 
fundamental response in (2.12a, b ) ,  along with the relatively slow spanwise 
dependence and the relatively small viscous effects, as we see below. The second- 
harmonic contributions play no significant role. 
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Solving (2.11~-c) first, then, for example by taking the normal derivative of 
(2 .1 lb)  and applying (2.11~2, c) to give 

( 2 . 1 3 ~ )  

we find the expression 

for the mean shear correction. Here the nonlinear disturbances are supposed to die 
out at large negative times T, (this can be altered readily, e.g. to T, starting at zero), 
while the induced mean pressure term i3PZM/aZ, in (2.11 c )  is anticipated to  be zero 
due to the lack of a corresponding displacement forcing, which is justified in 
Appendix A. Second, (2.12~2, b) yield the extra fundamental shear solution 

( 2 . 1 4 ~ )  

and the integral of this, inserted into (2.126) with $ + O +  , gives the relation 

where the superscript (w) refers to evaluation at g = O +  . 
There are three other regions in the y-direction (figure l),  a viscous wall layer (11), 

a buffer zone (111) for the mean flow, and a critical layer (IV). Of these, only the wall 
layer contributes to closing the system of governing equations for the VWI ; cf. other 
works where the buffer zone is more active. The wall layer I1 is a Stokes layer 
effectively, with y = Q-iy”, and y” is 0(1) for an unsteady-viscous force balance; 
therein u = O(SZ3) from (2.5a), ( 2 . 1 0 ~ )  and v = O(Q4) by continuity. The latter 
velocity then provides a viscous displacement or efflux, as far as the major region I 
is concerned, giving the value v!$ = 2 4  (i - 1)  P,, ( 2 . 1 5 ~ )  

on matching at large y”, as in Smith & Burggraf (1985), Smith & Stewart (1987) for 
instance. The buffer zone I11 in contrast is fixed by the unsteady-viscous balance for 
the mean-flow corrections, requiring y = O( 1 )  due to the slower timescale and leading 
to a diffusion equation governing the mean flow there (cf. $5.2). This structure 
combining 11, I11 near the wall is consistent with the constraint that 

UkZ = 0, (2.15b) 

as might be expected from (2.11b). The fourth region, the critical layer IV near 
5 = 1, is predominantly nonlinear and acts to smooth out the singularities appearing 
in the solutions for the major region I,  e.g. in (2.13), ( 2 . 1 4 ~ ) .  

The VWI system is completed by appeal to the pressure-displacement interaction 
laws inferred from (2.lf)  or (2.19, h), as in Appendix A. These yield the law 

A,, = P,,+Y where 9 = . ap I>---, ia2p0 ax, 2az; 
( 2 . 1 5 ~ )  

in particular. So, with A,,-P,, replaced by 9, and on use of (2.15a, b), the relation 
(2.146) can be coupled with (2.13b) to provide the two governing equations for the 
three-dimensional wave pressure Po and the mean (vortex) shear correction aUoM/aiJ 
in the current VWI. 
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3. Governing equations, and computational properties 

eauations 
In normalized form, the VWI is found to be governed by the coupled nonlinear 

(3.1 a, b)  

for (P, Q) (2, T). Here as our main example we are taking now the case of dependence 
on (a2 T,+b2X2)(  = E ) ,  rather than on T2,X2 individually, with a2,b2 being constants, 
and the normalization involved has 

P, = ~(a2+2b2)-la-~exp ( - 2 + i ~ , ) ~ ,  Z ,  = 2 - i ~ ~  ( 3 . 2 ~ )  

(3.2b) 
au 

($-1)-"d$ = 24Q, 6 = 24(a2+2b2)T r a Y  
from (2.13a, b), (2.14b), (2.15a-c). The constant a is given by 

3 4  a = 1 + ( b  - 1) (b  + 1)-2 + 6b(b - 1 )  (b  + 1)-4 + 12b2( b + 1)-6 In lbl, 

where b = bi'a,, and it is assumed that b 4 - 1, a2 + 0, a > 0, (a,+2b2) > 0; see also 
$5.  The coupling term ccPQ in ( 3 . 1 ~ )  represents the effect of the vortex flow (i.e. the 
mean-flow correction here) on the nonlinear wave development oc P, while in (3.1 b) 
the spanwise variation of the wave amplitude (on the right) acts to control the vortex 
flow (cc &). Thus both P, Q are unknowns. 

In  general a computational solution of (3.1 a, b) is necessary; see also Appendix B 
concerning secondary instability properties. Computations were performed using a 
spectral method with periodic boundary conditions imposed at 2 = k0.5, to fix 
matters. Two sets of initial conditions at T = 0 were studied, namely, 

where = 0.05 (case 1) or 0.01 (case 2). Results for case 1 are presented in figure 2. 
Grid-effect studies suggest that the accuracy achieved (with about 250 modes) is 
quite satisfactory. The most noticeable feature of the computational results as time 
T increases is the pronounced growth of lPl, accompanied by spanwise focusing and 
an accentuated minimum in Q. This feature leads on to the analysis below. 

4. Finite-time blow-up 
Given that the computational results of the previous section tend to suggest that 

a singularity may arise in the solution of the VWI system (3.1a, b) at finite time, we 
tried a number of possible analytical descriptions of a finite-time blow-up, say as 
T+ T,- . The one that appears to be consistent is as follows. 
In polar form, P = R exp (id) with R, d real, and with p = R2, (3.1 a, b) are replaced 

bv the three real eauations 

( 4 . 1 ~ )  

(4.1 b)  

(4.1 c) 
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FIQURE 2. Computational results for lpl, Q versus 2 at times T equal to (a )  3.75, ( b )  3.85, for 

(3.la, b)  subject to (3.3). 

for (p, 8, &)(Z, T), and of course there is the integral property 
m 

p(2,  T) dZ = eaT Lm 
from (4.la). Then, as T - t q - ,  the proposed blow-up response has 

(4.ld) 

p ( q - ~ ) - z p ( v ) ,  e - X Z K ( T , - T ) - ~ + & ~ ) ,  (4.2 a, b )  
& - jz(q-T)-40(7), with 7 = ~ ( Z - Z , ) ( ~ - T ) - z ,  (4.2c, d )  

near the singular location Z = 2,. The constants i , K  are unknown, and the orders 
in (4.2a-d) are implied by an order-of-magnitude argument applied to (4.1 a d ) .  
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- I  

FIGURE 3. Numerical solution c If the terminal foi -m (4.3c), (4.4). 

Substitution of (4.2a-d) into (4.1 a-c) yields the nonlinear ordinary differential 
equations 

(@)' = 0, 3~ij2-&y+v2+i52&2 = -,yo, (4.3 a, b )  

272p + 1 l@+ lo& = g (4.3c) 

at leading order, with a prime denoting d/dy. Here ( 4 . 3 ~ )  integrates to give 
@ = L ,  an unknown constant, and so we are left with solving 

3 ~ ~ 2 - & 5 7 + 1 f l 2 + ~ 2  = -a$, (4 .34  

coupled with (4.3c), for p", &. In addition there is the condition 

(4.3e) 
J -m 

to be satisfied, in view of the integral property (4.1d). 
The large-7 behaviour seems to require that L = 0, however, and so (4 .34  becomes 

7'' = (&+3K)r", with p" = P ,  (4.4) 

which, with (4.3c), govern r", p", &. Here, at  large 7, in general r", p" decay exponentially 
and & a yd2 provided that K ,  which serves as an eigenvalue, is positive. The constant x in (4.2b-d) remains arbitrary, we note, being determined presumably by the initial 
conditions. So without loss of generality o(0) may be taken as f 1 or zero, although 
the computational results of $3  suggest the value - 1.  Again, we assume here that 
r", p", & are even in 7. A numerical solution of (4.3c), (4.4) with r"'(0) = &'(O) = 0, 
Q(0) = - 1,  r"( & co) = &( f ao) = 0, indicates the value K x 0.147 and is presented in 
figure 3. 

The analytical description in (4.2 a)-(4.4) appears to agree with the computational 
results of $3, locally near blow-up, as the comparison in figure 4 shows. It is 
interesting that the blow-ups for cases 1 ,2  seem to occur at 121 = 0,0.5 respectively. 
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5. Further comments, repercussions, and comparisons with experiments 
5.1. Further comments and repercussions 

There are several points to make first about the flow structure discussed in $2. As 
elsewhere, e.g. Hall & Smith (1988, 1989, 1990, 1991), Bennett, Hall & Smith (1991), 
Smith & Walton (1989), Smith & Blennerhassett (1992), Smith (1992), the behaviour 
of the mean-flow correction or vortex part is most interesting. It is driven by wave- 
amplitude-squared forcing aa in other configurations studied but acting here mainly 
in the bulk of the motion rather than being concentrated in a viscous wall layer or 
critical layer. The wave-amplitude forcing is relatively small but this is still sufficient 
to affect the spanwise-momentum balance of the slowly evolving vortex motion and 
hence, through continuity, the streamwise velocity of the vortex. Simultaneously the 
induced vortex flow acts to help control the development of the wave amplitude, 
thus provoking the interaction. The second harmonics, in contrast, play an 
insignificant role as they do not undergo a similar enhancing effect. Again, it is 
observed that the vortex contribution itself can produce a critical layer (at fj = - b 
if this is positive, see also $3) which is additional to the main one, at fj = 1, but is 
believed to have negligible active influence on the whole interaction. Our current 
interest in any case is mostly in the purely temporal evolution where Ibl+ 00 in effect, 
as mentioned later. The effects of viscosity are also mentioned later. 

Turning now to points that are more specific to the study in §§3,4, we begin by 
noting that the VWI system (3.la, b )  exhibits strong secondary instability if the 
initial input is two-dimensional or nearly so. This aspect covers one of the issues 
raised in the introduction and is dealt with in Appendix B in some detail. The 
primary result is that the secondary instability increases with increasing input 
amplitude and/or with increasing spanwise variation (a/aZ). Similar results hold for 
other VWI’s and related nonlinear interactions. Such instability acts merely as a 
precursor, of course, to the fully three-dimensional nonlinear case of (3.1 a,  b ) ,  which 

\ 
(arg P)-* \\ 

\ 
\ 
\ 
\ 
\ 
\ 

* .  \ 

- 

- 
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then leads on to the nonlinear blow-up response of $4. It should be emphasized here 
that this is one of a number of paths through transition, in our opinion. An 
alternative is that which stays purely two-dimensional longer, avoiding secondary 
instability above and entering a nonlinear planar stage, as addressed and compared 
with experiments by Kachanov et aZ. (1992). The subsequent spike formation may be 
different for different paths; see also $5.2 and Smith & Bowles (1992). We should 
emphasize also that the present VWI holds for non-zero slow-time dependence and 
indeed our main interest here is in the purely temporal case where a/aX,  = 0. The 
purely spatial case, where a /aT ,  = 0, is not covered, since then the constant b 
becomes zero, the buffer layer near the wall changes in character, and a different flow 
structure must hold. This is the subject of further study. The present VWI, then, is 
believed to yield the finite-time blow-up described in $4, for most reasonable initial 
and boundary conditions. The blow-up is local in space and so can apply even for 
non-periodic boundary conditions in 2. The viscous effect, i.e. the term P in the right- 
hand side of (3 . la) ,  plays only a subsidiary role in the blow-up (see (4.la), (4.3b)), 
despite playing a primary one elsewhere, e.g. in the earlier secondary instability of 
Appendix B and in Smith & Stewart (1987). Hence the actual blow-up behaviour is 
predominantly inviscid ; see also the main repercussion addressed below in $5.2. 
Further, as far as we know, the present nonlinear case is the first, in the high- 
frequency range and related ones, to yield a blow-up within a finite time or distance. 

A number of subsequent issues arise. For example, what happens if the effective 
frequency D is raised to O(RefT), cf. Smith & Burggraf (1985) and below ? What are the 
implications for VWI's with oblique-wave input, rather than near-planar, in this 
range? What then is their connection, if any, with the resonant triads of Craik (1971, 
1985), Smith & Stewart (1987) which, it is interesting to observe, start with 
amplitudes similar to those in (2.3a, b )  but do not exhibit blow-up as here? What are 
the analogues for compressible boundary layers and for channel flows (for the latter 
there would seem to be much similarity with the formations of streets in Nishioka 
et aZ.'s (1979) experiments, a matter now being investigated theoretically (Smith 6 
Bowles 1992)) ? Further research is in progress on some of those issues. 

5.2. The main repercussion 
The major repercussion directly from the analysis and computations in $ 5 2 4 ,  

however, concerns the flow response following the blow-up of $4. The orders of 
magnitude involved suggest that the next distinct stage (near 2 = 2, at time T x T,) 
arises when the wave amplitude Ipl increases to the order of d, but with the typical 
streamwise velocities of the vortex then increasing to the order of fd (because of 
(4.2c)), comparable with those of the basic flow, from ( 2 . 5 ~ ) .  This occurs when the 
timescale (t-q) becomes as small as O(D-fT), from 14.2") with (2.2a), and the 
spanwise lengthscale IZ-Z,I is then decreased to O(D-%), from (4.2d) with (2.2c), a 
scale which is comparable with the shortest x-scale. Simultaneously, the typical 
vortex displacement KA,, is raised by a factor 4 whereas the typical wave 
displacement K A ,  is raised only by a factor d, in view of (2.10c), thus introducing 
a relative effect of order 4-f. The same relative effect is caused by the mean pressure 
which starts as O(4- i )  in (2.3a), and in Appendix A, but then is found to rise to 
O(52-i) due to the growth of lAoMl mentioned above. Similar estimates may be made, 
e.g. for the spanwise velocity, which now increases to O ( d )  because of (4.2a, d )  with 
(3.2), (2.10e), ( 2 . 5 ~ ) .  Hence this new stage has the form 

u = Q4?z&M + l 2 - q  + . . . , ZI = GW, + PI + . . . , w = D-fTIv, + D-W1 + . . . 
(5.1 a-c) 
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FIQURE 5. The new flow structure following the finite-time blow-up. The effect is now strongly 
nonlinear and more focused spanwise, as described in $5. Cf. figure 1. 

for the velocities in the bulk of the flow where g is O( l),  with the unknown pressure 
and negative displacement given by 

(5.1 d ,  e )  

I 

'L 

and the multi-scaling hiis 

p = d p ,  + f 2 - q  + . . . , A = dAOM + 52-bf1 + . . . , 

a 526 , a  a l a  a , a  
at aT, aT ax ax, ax az az, -+-+m,+ ..., --+m--+f27~+ ..., -+@-+... . (5.2a-c) 

The relative error generally is of order f2-i now. Here ooM, AoM are slowly varying, 
i.e. independent of X,, T,, so that ooM in particular gives the total mean-flow 
streamwise velocity in this regime. See also figure 5.  Bubstifu'ting into (2 . la-c)  
therefore yields, for the mean-flow terms first, the nonlinhar governing equations 

(5.3b) 

(5 .34  

FLM 244 
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where the subscript M denotes the mean-flow (vortex) component and the forcing 
term present is 

F ( 2 ,  S, Z,, f') = - ia, 011 @:, + iol, O:, Rl + &, - -+ a@& Vtl - a$,+a(R,W&) . (5 .3d)  
a Y  a?J 3 2 0  

Here 01, 11 denote the E-(wave) components, where 

E = exp [i(a,X,- 5 9 1 ,  (5.4) 

with a, a real function of 2, 9 but unknown (strictly a o X ,  should be replaced by 
&jao&), and the wave terms are controlled by 

ia, Oll+ag,~ag+a~,~az, = 0, (5 .5a)  

(5.5b) 

(5.5c) 
- iOll + ia, OoM 011 + I& a O o M / a g  + Rl aOOM/az, = - ia,Fol, 

- imOl + ia, OoM Rl = - aPol/azo, 
again from (2.1 a-c). The boundary conditions for the vortex and wave systems above 
include the tangential-flow and displacement constraints 

G M = O ,  G , = o  a t  $ = o ,  ( 5 . 6 ~ )  

O o M - g + d O M ,  W O M + O ,  O1,+dl1, % , + O  as $+a, (5.6b) 

from (2.1d-e) (see also below and Appendix C), combined with the pressure- 

ds 
displacement laws 

dOM(2> s, ( 5 . 6 ~ )  

(5 .6~3)  
P,,,+FOl, aPo,/ar+ -aid,, as Y+O,  

linking plM with do, and Pol with d,, respectively, due to (2.lf-h). In ( 5 . 6 ~ )  the 
single-integral form stems from the fact that the x-variation is slow for the mean 
terms, while in (5.6d) Y equals @$. Although OoM, which appears among the 
coefficients in ( 5 . 5 ~ - c ) ,  is unknown it is a slow function in the streamwise direction 
and this allows some further simplification. Thus solving ( 5 . 5 ~ - c )  for Oil, c,, Rl as 

I ( -a: + a2/ay2 + a2//a2:)~, = 0, 6, bounded, 

in Smith ( 1 9 7 9 ~ )  and applying (5 .6a,  b )  we obtain 

= i(a, OoM - I)-, a~,,/az,, 

with 011 then following from (5 .5a) ,  and 

where 

az, az, 
00 

I = [ (OoM-a;1)-2dg. 
J o  

Further, the results (5.7a, b)  enable F in ( 5 . 3 4  to be reduced to the form 

(5.7a) 

(5 .7b)  

( 5 . 8 ~ )  

(5.8b) 

(5.9) 

after some manipulation. 
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So we are left now with a VWI in which the vortex part [ooM, cM, RM,doM,&] 
has to satisfy (5.3a-c), subject to the boundary conditions in (5.6a-c) and the wave- 
forcing F in (5.9), and the wave part [Fo1,dl1] is governed by (5.8a, b )  coupled with 
(5.6d). 

The principal features of this new VWI so far are the following. 
(a)  It is strongly nonlinear, since in particular the total mean flow is now affected 

locally (see &la)), and the vortex and the wave parts must be solved together 
because of the coupling via F in (5.9) and via the integral I in (5.8a, b).  This strong 
nonlinearity arises while the wave amplitudes are still small. 

(b )  The wave-forcing F here is again active essentially throughout the local flow 
field. Certain new effects are present now, compared with those described in $2, 
including more inertial terms in (5.3 b, c) and the spanwise pressure gradient in 
(5.3c), the R1 inertial effect in ( 5 . 3 4  and the ~i3~ol/~Zo~2 contribution in (5.9), as 
well as the strong nonlinearity, although the mean streamwise pressure gradient still 
has negligible influence (see (5.3 b)) .  Further, the spanwise dependence continues to 
be non-simple. 

(c) The proposed VWI flow structure above is unusual in that it is predominantly 
inviscid, as could be anticipated from $4, On the other hand, viscous effects are 
expected to re-enter the reckoning through a different mechanism in due course. For, 
as ( 5 . 6 ~ )  indicates, the three-dimensional viscous sublayers nearer the wall are 
assumed to be passive and attached; yet they are unlikely to remain so in many 
cases. See also Appendix C. This connects with the non-interactive singularity of Van 
Dommelen (1981), Elliott, Cowley & Smith (1983), and with the studies of interactive 
break-up, sublayer eruption and vortex formation in Smith (1988), Peridier et al. 
(1991a,b), Hoyle, Smith & Walker (1991, 1992), Hoyle (1992), Smith & Bowles 
(1922) (who show quite close agreement with experiments on the first spike) and with 
continuing theoretical work. 

(d )  There is also the question of whether the critical layer occurring near the 
position where ooM = a;' (see (5.7a)-(5.9)) can remain passive as in the original flow 
structure of $2, The critical layer is again nonlinear but now it is fully three- 
dimensional, its position being dependent on $, Z,, ? since ooM is no longer a small 
perturbation of Q in general. Along with this, there is the possibility that 
vortex/Rayleigh-wave interactions may be provoked in addition if the profile ooM 
becomes sufficiently inflexional (see also (e) below), and again new critical-layer 
effects are very active then (Hall &Smith 1991), although that is at the inflexion 
point. 

( e )  Nonlinear finite-time break-up in the new VWI system is a strong possibility, 
in the manner described by Smith (1988) and extended to three dimensions by Hoyle 
et al. (1991), Hoyle (1992). The integral I in (5 .8b)  forms a link with the 1988 paper. 

(f) Obviously there are many other intriguing, and difficult, issues to be addressed. 
Possible limiting solutions of the new VWI could be helpful. The regime where 

3 O(Ref) could be of interest, where the flow structure moves into Euler scales, with 
the dominant streamwise length shrinking to O(Re-f.) as in Smith & Burggraf (1985) 
but with the vortex streamwise lengthscale elongating to O(Re-A), and likewise for 
the timescales, in view of (5.2b). Many of the previous comments apply equally well 
to that regime. 

It seems clear then that a powerful new effect is produced, as summarized by 
(5.3u-c), (5.6a-d), (5.8a, b) ,  (5.9). Hence the VWI studied in the present $ 9 2 4  
provides a means for relatively small near-planar input disturbances (as in (2.3a, b ) ,  

4-2 
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(2.4), (2.5a-c)) to gain ‘O(1)’ (strong nonlinear) status sooner, because of three- 
dimensional interaction leading to the blow-up in $4, rather than later as would be 
the case in purely two-dimensional evolution (Smith & Burggraf 1985). 

The nonlinear blow-up and the associated spanwise focusing here seem to agree 
with the findings of Klebanoff & Tidstrom (1959) and subsequent experiments; 
further, the agreement is enhanced by the interactive-break-up predictions 
summarized in (c) above, as a comparison with the experimental oscillogram of 
characteristic breakdowns shown in Stuart’s (1963) figure IX.26 indicates. 
Experimental comparisons are given below. 

5.3. Comparisons with experiments 
Here we make a number of comparisons between the present theory and the original 
experiments of Klebanoff & Tidstrom (1959) as given in Stuart (1963). These 
experiments show nonlinear effects leading on to turbulence between the lower and 
upper branches, typically, and so we can examine the applicability of the current 
theory. 

Of interest first are the graphical results presented in Stuart’s (1963) figures 
IX.26-28. In figure IX.26, a comparison of the typical spanwise z-scale of 1 in. with 
the typical mean-flow streamwise evolution scale (X,) of 3 in. suggests taking the 
value G? = 9, in view of (2.2b, c). 

The theory then implies that the z-scale associated with spanwise focusing into 
streets and strong nonlinearity is reduced by a factor 0-1 (from (5.2c)), thus 
predicting the new z-scale to be 4 in. See the comparisons in figure 6 (a), which seem 
favourable. 

The theory also predicts that the perturbation velocity u’ of the wave part 
increases by a factor d (see (5.la), (2.5a)), i.e. by 4 3 ,  while the vortex velocity 
increases by a factor SZ, i.e. by 9. Again the comparisons in figure 6(a) seem 
favourable. 

Concerning frequency dependence, Stuart (1963, p. 575) records that reducing the 
input frequency by a factor of approximately 2 increases the typical u‘/Ul (where U, 
is the local free-stream velocity) by a factor of about 2 experimentally. In 
comparison, the theory implies an amplitude cc L2-i (from (2.5a)), i.e. a factor 4 2 .  

Also, later in the transition process, ‘breaking into turbulence ’ occurs experi- 
mentally (Stuart, p. 575) at a value of u’/Ul of about 0.074. This compares 
favourably with the bulk value of u‘/Ul predicted theoretically in $5.2 as R e 4 0 4  
from (5.la), or 0.071, based on the ratio of the typical y-scale (0.046 in.) to the initial 
z-scale (1 in.), which varies as R e - f d  from (1.1 c) with ( 2 . 2 ~ )  ff. 

Further, the above bulk value varies only relatively slowly (like Q-:) with the 
frequency 0, in line with Stuart’s comment in line 8 of his page 575. 

The velocity values in Stuart’s figure IX.27 are also not inconsistent with the 
scalings of (2.5a), for the experimental values for the original basic-flow, vortex and 
wave parts are about 0.3, 0.03, 0.02, i.e. in ratio 10: 1 :0.7, whereas the theoretical 
ratio is 0 : 1 : 1, i.e. 9 : 1 : 1. See figure 6 ( b ) .  

The trend in Stuart’s figure IX.28 concerning the influence of increasing the input 
amplitude, which promotes the breakdown, likewise seems in keeping with the 
theory. Thus increasing the input amplitude P by a factor p,, say, in (3,la,  b ) ,  is 
accommodated simply by factors ,u;l, p;;, ,ul in T (or q , X 2 ) ,  Z , ,  Q in turn, with the 
linear growth term in ( 3 . 1 ~ )  assumed negligible. So the theory predicts that the 
product of the input amplitude and the x-evolution length up to  blow-up remains 
approximately constant. This product, for the three experimental runs leading to 
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FIWJFLE 6. Comparisons between the theory and the Klebanoff & Tidstrom (1959) experiments ; 
(a+) are taken respectively from Stuart’s (1963) figs. IX. 26-28; see $5.3. (a) Comparing theoretical 
spanwise lengthscales (i), (ii) (vertical bars), streamwise lengthscale (iii), and velocity scales (iv), (v) 
(horizontal bars), with the experimental measurements of non-dimensional velocities versus z a t  
various streamwise locations xl. (This z and that in (b) below are different from the coordinate 
introduced earlier in the text). (b) Comparing theoretical velocity scales (i)-(iii) (horizontal bars) 
with the experimental measurements of u’/Ul (0) and U/Ul (A) versus z, where U denotes the 
mean velocity, and z1 = 7 in. (c) Comparing theoretical blow-up locations (marked b, c, d, 
according to the relation (input amplitude) x (distance) equals constant, as described in $5.3) with 
the breaking-point locations found experimentally as shown, for the respective cases B, C, D. Here 
b is lined-up for case B, with c, d then evaluated as above; notation here is as in Stuart (1963). 
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blow-up in the above figure, has the values 0.0048 x 6.3,0.0080 x 4.3,0.012 x 2.8, i.e. 
0.0302,0.0344, 0.0336, which, indeed, are not far from constant. See also figure 6(c). 

Some of the nine or so comparisons listed above are summarized in figure 6(a-c). 
The overall agreement seems good in order-of-magnitude terms at  least. Moreover, 
in response to a comment by Professor S. N. Brown, we observe that the z-station at 
which the blow-up of $ 4  takes place is a peak rather than a valley, if a peak is 
characterized (as in Stuart 1963) by energy enhancement. More significant perhaps 
is the fact that a scale change is produced in the variation of the mean boundary- 
layer displacement which mostly increases rapidly in the blow-up (since the variation 
is effectively -AoM which is proportional to -&, see also figure 4). Simultaneously, 
the wall shear stress, being proportional to -Q  here, also mostly increases rapidly 
however, due to a combination of critical layer and three-dimensional effects. 

There may be other explanations of course, e.g. VWI's nearer the lower branch as 
in Smith & Walton (1989, see especially their $ 5  where spanwise focusing is again 
possible) or nearer the upper branch, but the evidence so far tends to suggest that the 
current theory captures much of the heart of the experimental findings for this type 
of boundary-layer transition. 

The referees' helpful comments are gratefully acknowledged ; and thanks are due 
to SERC for support of P. A. S. during 1987-89 and for computing facilities and to 
AFOSR (grant no. 89-0475) and the United Technologies Independent Research 
Program for support of F. T. S. 

Appendix A. The external pressuredisplacement relations 
To obtain the successive components in the pressurdisplacement interaction, we 

prefer to address (2.19, h) rather than (2 . l f ) .  Guided by (2.3a), the outer pressurep 
expands as 

where the x, z-dependence is as in (2.2b, c), q = 524 Y mostly, and the power m is 
found below. From (2 . lg) ,  the governing equations for 5, I?, are 

p = P,+Q- 'P~+O(Q-~) ,  (A 1)  

(& -+- :;)- Po = 0, 

Hence the solutions are given by 

~ o = P o , E + ~ . ~ . ,  P, =P,,,E+ ...+ c.c., (A 4) 

. ap i a z ~ ,  
ax, 2az; 

with 5, = PoePY, P,, = (P,,+n,, Y)ePY, where n,, = I>+--. 

(A 5)-(A 7) 

Here the matching condition on ap/aq in (2.1 h) confirms the results Po = A,, a,, = 1 
in (2.10c, d) ,  at leading order, followed by the relation 

-PZl +n,, = 2i (aAo/aXz) -A,,,  (A 8) 

from (A 6). Then use of (A 8) with (A 7 ) ,  ( 2 . 1 0 ~ )  leads to the law quoted in ( 2 . 1 5 ~ ) .  
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Other successive terms in the expansion may be determined similarly, although 
there is some subtlety about the mean-flow (vortex) contributions, of which the main 
one is driven by the term SZ-iAoMEo in (2.3b). This has no fast dependence on x and 
so forces only a contribution O(SZf) to a2A/ax2 in (2.lh), given (2.2b). Further, the 
y-scale for the mean-flow terms stays as 0(1), to balance the z-scale in effect. So the 
third-order term in ( A l )  must include 

QSPM (x2, g ,  z,, T ) E O  (m = i). (A 9) 
Substitution into (2.19, h) then yields the quasi-two-dimensional cross-plane problem 

and with far-field boundedness as usual. Hence the induced surface pressure has 

where a 2 & q  a2AoM/axi, (A 12) 
and as anticipated in ( 2 . 3 ~ )  the mean-flow-correction pressure at the surface is only 
O(SZ-g), specifically SZf times (A 11). 

Appendix B. On secondary instability of purely two-dimensional flow 

identically, so that the exact solution has 
For the pure two-dimensional case the Z-derivatives and Q in (3.la,  b) vanish 

P=b"eT,  Q = O ,  (B 1)  

with b" being a complex constant. To examine the secondary instability of this 
solution (cf. Bayly, Orszag & Herbert 1988; Smith & Stewart 1987) we consider a 
small perturbation of (Bl) ,  in the form 

(p, 0, Q) = (fie2T, 0,O) +E(p, 8, a) + O(2) (B 2) 
with E small and B = lb"12 since p = IPI2. Substitution into (3.la,  b) or equivalently 
(4.1 a-c) then yields the linear equations 

for the pertur3aiions. From (B 3)-(B 5) and taking spanwise periodicity such that 
( p ,  e" ,@ = (d, 0 , a )  cos (PZ) we therefore obtain the ordinary differential equation 

& -4&!tt + (4 +PI Q -  2 ~ g  6 = 0 (B 6) 

So if there is no initial two-dimensional wave then 8 = 0 and the vortex effect 8 
grows as exp (2T+i$ T) at most. By contrast, the presence of the two-dimensional 
wave, i.e. fi =k 0, provokes the vortex growth 

for &T). - 

- 
0 cc exp [$,8B?'exp (T/2)] (B 7) 

at large times T. Thus, as in a number of other interactions studied, pronounced 
three-dimensional secondary instability to vortex motion is produced, of the 
exp(exp) form. 
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Appendix C. On the flow nearer the surface, in the strongly nonlinear stage 
This Appendix concerns the small-8 properties of the strongly nonlinear VWI 

stage of $5.2 and the two resultant viscous layers - a nonlinear buffer zone and a 
quasi-linear Stokes zone - nearer the surface. The buffer in particular introduces 
significant new features as anticipated in item (c) in $5.2. 

First, (5.3b) indicates that the total mean velocity ooM is conserved along all the 
particle paths, after starting out as identically equal to 8. Hence ooM remains zero 
at  jj = O +  . Generally, for small 8, 

[ “ O M , c M , % M l  [h18,rUld,Vo+V19]+..., (C 1)  
where the unknown coefficients satisfy, from (5.3a-c), 

and F, denotes the value of (5.9) at 5 = O +  . 

given by y = 52-i y1 with y1 of O( 1)  and the underlying expansions 
Second, there is therefore a viscous buffer zone for the total mean-flow components, 

u = Q-tUcO’+g-fU“’+..., (C 5 )  

(C 6) 
(C 7 )  

v = & Jm) + O ( Q t )  + a-t p + Qd p z )  + ... 
w = g t  W‘O’ +Q-f w(1) +Q-1 W(2’ + .. . 

for the velocities; see also (C 24) later. The pressure and displacement remain as in 
(5.ld,  e ) ,  while (5.2a-c) describe the multi-scaling present, with Uo) being 
independent of Xo, T,. Substitution into (2.1 u-c) then yields the successive governing 
equations, from the continuity and the streamwise and spanwise momentum 
balances respectively, 

(C 8), (C 9) 
aU(i) avco) aw(o) au(O) av(1) a w l )  - 

+-+---=o, -+-+-- 
ax0 aY1 azo ax ayl azo 

the new feature here is the appearance of the viscous terms in the right-hand sides 
of (C l l ) ,  (C 13), as expected. Hence (C 8), (C lo), (C 12) show that the main wave part 
is given by the simple expressions 

~ ( 1 1 )  = aopol, ~ ( 0 1 )  = -i- aF01 ~ ( 0 1 )  = -i 
azo 

for the E-components, which match with the bulk solution via (5.7u, b) .  The total 
mean-flow or vortex part in contrast is controlled by the viscous nonlinear system 

a p M )  a w O M )  a uo) a uo) a p )  azu(0) 
+- = 0, -+, VWM) -+ w ( O M )  - = - 

aY1 azo aT aY1 azo ay; ’ 

(C 17), (C 18) 
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from (C 8), (C l l ) ,  (C 13), where F(O) comes from the mean-flow part of the three 
nonlinear terms in (C 13) and can be shown to be equal to Fo (in (C 4)), using 

Thus the buffer's mean-flow responds as a quasi-two-dimensional unsteady boundary 
layer in the cross-plane, for VoM), in (C 17), (C 19), with the wave-amplitude- 
squared forcing F(O) effectively acting here as an extra contribution to the spanwise 
pressure gradient, and with the 3-variation remaining secondary. The boundary 
conditions are 

WOM) + vo (with VoM) - p1 y l )  as y1+ a, 
W(OM) = J'(OM) = 0 a t  y1 = 0. (C 22) 

Here vo (x, Zo,  f') is to be determined from the outer inviscid bulk solution, as in $5.2 
and (C 2), (C 4). Hence as vo varies, the system (C 17), (C 19)-(C 22) is able to follow 
a path towards the Van Dommelen (1981) non-interactive singularity in a finite time ; 
after that the interactive finite-time singularity of Smith (1988) and other features 
of recent and continuing study as mentioned in (c )  of $5.2 can come into force. This 
development competes with the possible development of a singularity in the bulk 
motion of $5.2 (see (e )  there). 

Afterwards in effect (C 18) serves to fix the streamwise mean velocity Vo), subject 
to Vo) asymptoting to Aly, as y1 + co and being zero at y1 = 0. Thus the scaled mean 
streamwise wall shear will be altered still further, as it takes the values 1 at large $ 
in the bulk, A, at small $ or large y l ,  and ClU(O)/ay, at small y1 in the buffer. 

Third, there is a Stokes layer, a zone closer to the wall and performing the usual 
task of reducing the wave velocities to zero at the surface. This viscous zone has 
y = Q-iy with i j  of order unity and 

u = Q-&, + . . . + o(Q-~ vortex), 
v = Q+V, + . . . + O(Q+ vortex), 
w = Q-~u, + . . . + O(Q+ vortex). 

The governing equations here are quasi-linear, however, so that the leading terms in 
(C 23)-(C 25) have the usual Stokes form. The !iJ-dependent term that is found in the 
asymptote of vw in (C 24) at laye  i j  gives a viscous displacement effect (cf. $2), and 
this is responsible for the O(Q7) contribution, which is independent of y,, in (C 6 ) .  

The buffer-zone system in (C 17)-(C 22) confirms the re-emerging importance of 
viscosity in a new nonlinear way in the transition process, during the strongly 
nonlinear stage, despite the suppression of linear viscous effects earlier (see §$4,5). 
It is interesting also that the singularities referred to above for the buffer-flow system 
(C 17)-(C 22) are predominantly for the spanwise flow, in contrast to the bulk flow 
of $5.2. 
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